Attribution Analysis of Runoff Change in the Source Area of Weihe River
-
摘要: 受气候变化和人类活动的双重影响,渭河源区的径流日益减少。基于1975—2018年渭河源区武山水文站的水文资料及其周边3个气象站的气象资料,本研究采用Mann-Kendall趋势检验法、双累积曲线法以及Budyko假设的弹性系数法等多种方法,分析流域内的径流变化趋势及突变特征,揭示引起径流变化的驱动因素,并量化分析驱动因素的影响程度。研究结果表明,1975—2018年渭河源区年平均径流量为4.89亿 m3,呈现显著减小趋势;年降水量为467.43 mm,减少趋势不显著;潜在蒸散发量为811.39 mm,呈现显著增大趋势;渭河源区的径流突变年份发生在1993年。通过对渭河源区径流敏感性分析发现,径流对降雨的敏感性最强,其次是人类活动和潜在蒸散发量,且对三者的敏感性均呈现显著增大趋势。通过Budyko假设的弹性系数法发现,人类活动对径流变化的影响为主要因素,占径流变化量的54.09%,这是由于渭河源区大范围的退耕还林以及其他水土保持措施的实施,显著减少了地表径流的形成。Abstract: Influenced by climate change and human activities, runoff in the source region of Weihe River has been decreasing. Based on the hydrological data of Wushan Hydrological Station in the source area of Weihe River and the meteorological data of three meteorological stations around it from 1975 to 2018, this study used Mann-Kendall trend test method, double-mass curve method, and Budyko hypothesis elastic coefficient method to analyze the runoff change trend and mutation characteristics in the basin, to reveal the driving factors causing runoff change, and to quantitatively analyze the influence degree of driving factors. The results showed that the annual average runoff in the source area of Weihe River from 1975 to 2018 was 4.89 × 108 m3, showing a significant decreasing trend. The precipitation was 467.43 mm, and the decreasing trend was not significant. Potential evapotranspiration was 811.39 mm, showing a significant increasing trend. The year of runoff mutation in the source region of Weihe River occurred in 1993. Through the analysis of runoff sensitivity in the source area of Weihe River, it has been found that runoff showed the most sensitive to rainfall, followed by human activities and potential evapotranspiration, and the sensitivity to the three showed a significant increasing trend. Through Budyko hypothesis elastic coefficient method, it has been found that the influence of human activities on runoff change was the main factor, accounting for 54.09% of the runoff change. This was due to the large-scale implementation of returning farmland to forest and other soil and water conservation measures in the source area of the Weihe River. The formation of surface runoff has been significantly reduced.
-
Key words:
- Weiheyuan district /
- climate /
- human activities /
- runoff changes /
- Budyko hypothesis
-
表 1 研究区水文站和气象站数据
Table 1. Data of hydrological station and meteorological station
流域 水文站/气象站 经度(E) 纬度(N) 集水面积(km2) 水文年份 渭河源区 武山站 104°882′ 34°7278′ 8 080 1975—2018 漳县 104°467′ 34°8831′ — 渭源 104°12′ 35°08′ — 陇西 104°65′ 35° — 表 2 武山水文站1975—2018年径流量演变趋势
Table 2. Evolution trend of runoff of Wushan hydrometric station from 1975 to 2018
站点 差异系数 最大值(亿 m3) 最小值(亿 m3) 极值比 检验统计值(t检验) 显著性水平 武山站 0.51 10.769 1.127 9.554 −3.417 0.05 表 3 径流量、降水量和潜在蒸散发量的M-K检验结果
Table 3. M-K test of runoff, precipitation and potential evapotranspiration
流域 径流量 降水量 潜在蒸散发量 检验统计值 显著性水平 检验统计值 显著性水平 检验统计值 显著性水平 渭河源区 −3.338 0.05 −1.031 0.01 4.248 0.05 表 4 渭河源区径流对影响因子的敏感性值分析
Table 4. Sensitivity value analysis of runoff in the source area of Weihe River to impact factors
流域 年份 ET0(mm) R(mm) P(mm) W R/P ET0/P 弹性系数 ep $ {e}_{{ET}_{0}} $ eW 渭河源区 1975—2018 821.65 55.52 477.46 2.31 0.11 1.77 2.92 −1.92 −2.01 1975—1993 762.46 76.09 485.60 2.06 0.16 1.57 2.59 −1.59 −1.62 1994—2018 866.64 39.90 471.27 2.50 0.08 1.90 3.17 −2.17 −2.30 注:R/P为径流系数;ET0/P为干旱指数;ep为降雨的弹性系数;$ {e}_{{ET}_{0}} $为潜在蒸散发的弹性系数;eW为下垫面的弹性系数。 表 5 弹性系数的M-K检验
Table 5. M-K test of elastic coefficient
弹性系数 检验统计值 显著性水平 降水量(ep) 4.582 0.01(极显著) 下垫面特征(ew) −3.995 0.01(极显著) 潜在蒸散发量(eETo) −4.612 0.01(极显著) 表 6 渭河源区气候和人类活动对径流变化的影响
Table 6. Impact of climate and human activities on runoff change in the source area of Weihe River
流域 基准期 变化期 dRp(mm) dRw(mm) dRET0(mm) dR(mm) dR’(mm) CP(%) CW(%) CET0(%) 渭河源区 1975—1993 1994—2018 −4.87 −21.69 −13.54 −31.19 −40.09 12.14 54.09 33.77 注:CP表示降水贡献率;CW表示人类活动贡献率;CET0表示潜在蒸散发贡献率。 -
[1] 杨林, 赵广举, 穆兴民, 等. 基于Budyko假设的洮河与大夏河径流变化归因识别[J]. 生态学报, 2021, 41(21): 8421−8429. [2] 孙悦, 李栋梁, 朱拥军. 渭河径流变化及其对气候变化与人类活动的响应研究进展[J]. 干旱气象, 2013, 31(2): 396−405. [3] 师润, 田鹏, 赵广举, 等. 南北过渡带典型流域径流变化归因对比研究[J]. 人民黄河, 2020, 42(12): 29−35. doi: 10.3969/j.issn.1000-1379.2020.12.006 [4] 黄晨露, 陈军武, 黄维东, 等. 渭河上游水利水保措施的减水减沙效应分析[J]. 冰川冻土, 2020, 42(3): 965−973. doi: 10.7522/j.issn.1000-0240.2020.0070 [5] 张明军, 李瑞雪, 贾文雄, 等. 中国天山山区潜在蒸散发量的时空变化[J]. 地理学报, 2009, 64(7): 798−806. doi: 10.3321/j.issn:0375-5444.2009.07.004 [6] 夏兴生, 朱秀芳, 潘耀忠, 等. 中国大陆地区基于太阳辐射经验值计算ET0的适用性研究[J]. 干旱地区农业研究, 2019, 37(6): 221−230. doi: 10.7606/j.issn.1000-7601.2019.06.32 [7] 张建成. 基于多变量M-K检验的大凌河流域降水趋势分析[J]. 黑龙江水利科技, 2020, 48(1): 29−33. doi: 10.3969/j.issn.1007-7596.2020.01.008 [8] 穆兴民, 张秀勤, 高鹏, 等. 双累积曲线方法理论及在水文气象领域应用中应注意的问题[J]. 水文, 2010, 30(4): 47−51. doi: 10.3969/j.issn.1000-0852.2010.04.011 [9] 田小靖, 赵广举, 穆兴民, 等. 水文序列突变点识别方法比较研究[J]. 泥沙研究, 2019, 44(2): 33−40. [10] Choudhury B J. Evaluation of an Empirical Equation for Annual Evaporation Using Field Observations and Results from a Biophysical Model[J]. Journal of Hydrology, 1999, 216(1/2): 99−110. [11] Yang H B, Yang D W, Lei Z D, et al. New Analytical Derivation of the Mean Annual Water-Energy Balance Equation[J]. Water Resources Research, 2008, 44(3): 131−139. [12] Xu X Y, Yang D W, Yang H B, et al. Attribution Analysis Based on the Budyko Hypothesis for Detecting the Dominant Cause of Runoff Decline in Haihe Basin[J]. Journal of Hydrology, 2014, 510: 530−540. doi: 10.1016/j.jhydrol.2013.12.052 [13] 祁芯. 渭河流域甘肃段近60年降水时空分布及特征分析[J]. 甘肃水利水电技术, 2021, 57(4): 10−13. doi: 10.19645/j.issn2095-0144.2021.04.003 [14] Zhao G J, Mu X M, Jiao J Y, et al. Evidence and Causes of Spatiotemporal Changes in Runoff and Sediment Yield on the Chinese Loess Plateau[J]. Land Degradation & Development, 2017, 28(2): 579−590. [15] 吴晓, 靳峰, 张富, 等. 甘肃省淤地坝水资源的利用潜力[J]. 水土保持通报, 2022, 42(3): 29−35. doi: 10.3969/j.issn.1000-288X.2022.3.stbctb202203005 [16] 常丽娜, 赵新全. 三江源草地多功能目标管理与自然保护地建设[J]. 自然保护地, 2022, 2(2): 1−8. doi: 10.12335/2096-8981.2022010402 -